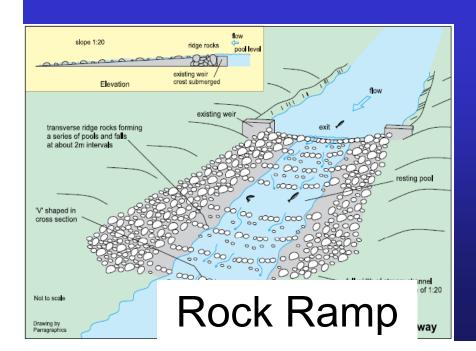


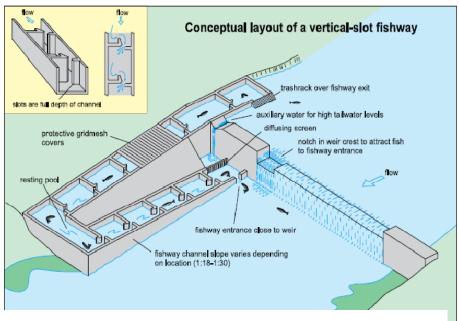
Key Factors

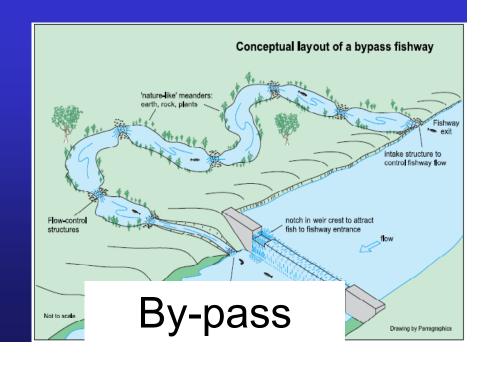
- Habitat Quantity
- Habitat Quality
- Passage Efficiency of Alternatives
- Optimizing benefits and addressing unintended effects

Examples from projects

Midwest fish don't jump!





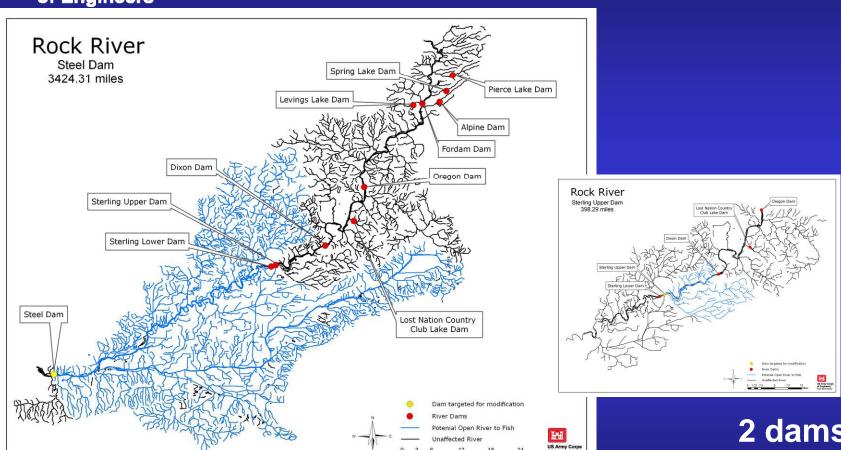


Dam removal

Technical fishway

- Habitat Quantity
- Habitat Quality
- Efficiency of Passage
- •How to optimize restoration plan when you have unintended ecological effects

Habitat Unit = Quantity x Quality



- Connected Stream Miles
- Connected Acres
- Connected miles * Stream order

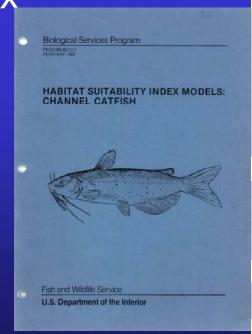
Rock River Example

2 dams ~400 stream miles

1 dam ~3,400 stream miles

One Team: Relevant, Ready, Responsive and Reliable

UMRS Navigation Study Example **Longitudinal Connectivity Index**



LCI = Σ (unobstructed stream length x stream order)

Pool 13	Connected Distance (miles) Stream Order		Connectivity	
Mill Creek	14.2	4	56.8	
Maquoketa River	41.5	6	249	
Apple River	13.1	5	65.5	
Rush Creek	32.2	4	128.8	
Plum River	39.4	5	197	
Elk River	17.6	4	70.4	
Pool 13 mainstem	55	9	495	
		TOTAL LCI 1	262.5	

Quality

- Habitat Suitability Indices for riverine species
- Qualitative Habitat Evaluation Index
- Index of Biotic Integrity
- Hydrogeomorphic Method

Northeast example, Habitat Suitability Indices

Alternatives	River Fish HUs	Lake Fish HUs	Wetland HUs	Combined HUs	
No Action	91	22	35	148	
Dam Removal	202	9	6	217	
Denil	152	23	35	210	
Bypass	176	23	35	234	

- Developed by the Ohio EPA
- Correlates with the Index of Biotic Integrity
- Evaluates
 - substrate, instream cover, channel morphology, riparian zone, pool quality, riffle quality, map gradient

HUs using QHEI

	QHEI	Distance	HU
Reach 1	64.8	1.22	79
Reach 2	32.4	5.5	178
Reach 3	55.3	0.6	33
	290		

Passage Efficiency

Generally,

Removal > Rock Ramp > Bypass > Technical Fishway

Passage Efficiency

Evaluate relative efficiency of different alternatives

- Best Professional Judgment, considering
 - Migration timing
 - H&H data
 - Fish swimming abilities
- Can fish find the entrance channel?
- Will there be flow in the channel during migration times?
- What about downstream passage?

Lock and Dam 3 Example Passage Efficiency Index = Average P

Where P = Estimate potential for passage (0= no potential, 5 = high potential)

	Passage Potential				
Species	Alt 1	Alt 2			
Lake sturgeon	0	4			
Paddlefish	0	4			
Mooneye	2	3			
Channel catfish	0	3			
Smallmouth bass	0	3			
	$\frac{2}{5*5} = \frac{2}{25} = 0.08$	$\frac{17}{5*5} = \frac{17}{25} = 0.68$			

Passage Efficiency Index



	HU	Passage Efficiency	Total HUs	
Alternative 1	100	0.08	8	
Alternative 2	100	0.68	68	

Habitat trade-offs

Dam removal

One Team: Relevant, Ready, Responsive and Reliable

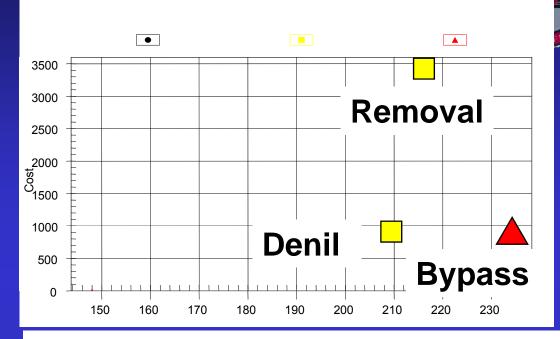
Blackberry Creek Example

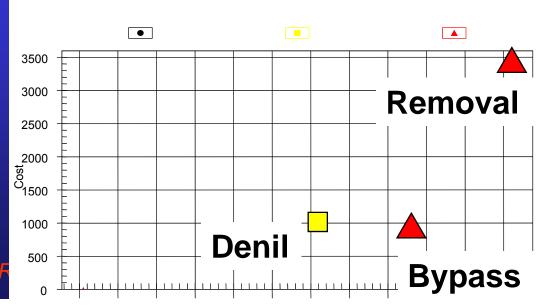
Lose wetland, gain quality stream

- Lose 0.8 acres low quality wetland
- Out-of-kind mitigation for over 6 acres improved stream habitat

Regulatory coordination, to be determined ...

Trade-offs, Northeast Example


Alternatives	Cost	River Fish	Lake Fish	Wetland	Combined
No Action	\$0	91	23	35	149
Dam Removal	\$3,426	202	9	6	217
Denil	\$982	152	23	35	210
Bypass	\$890	176	23	35	234


Optimize on River Benefits

US Army Corps of Engineers*

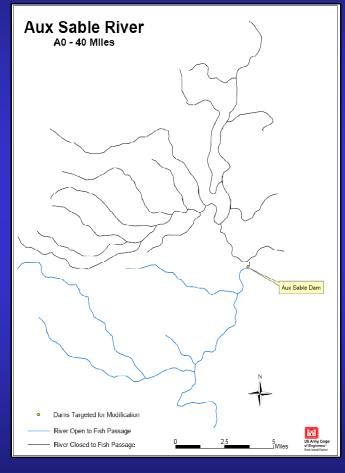
Combined outputs
= River + Lake +
Wetland

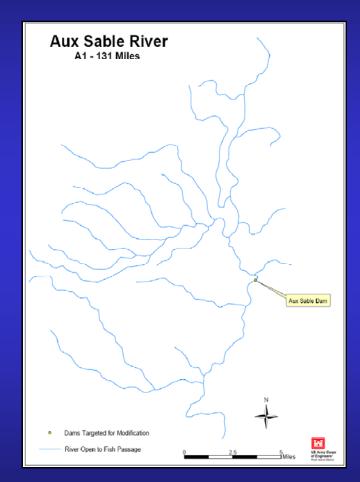
River outputs only

One Team: I

Take-away points

- Estimate the <u>quantity</u> and <u>quality</u> of habitat you are reconnecting
- Consider effectiveness of passage, now and with various alternatives
- Don't underestimate the benefits of removal
 - Deal with loss of lake and wetland habitat outside of CE-ICA


Jodi Staebell, Rock Island District 309/794-5448


jodi.k.staebell@usace.army.mil

US Army Corps How much is reconnected?

40 connected miles

131 connected miles

Why do we evaluate ecosystem benefits?

- Projects justified on non-monetary benefits
- Document significance of restoration
- Measure differences between alternatives
- Evaluation should characterize benefit and adverse effects

Better Decision-Making

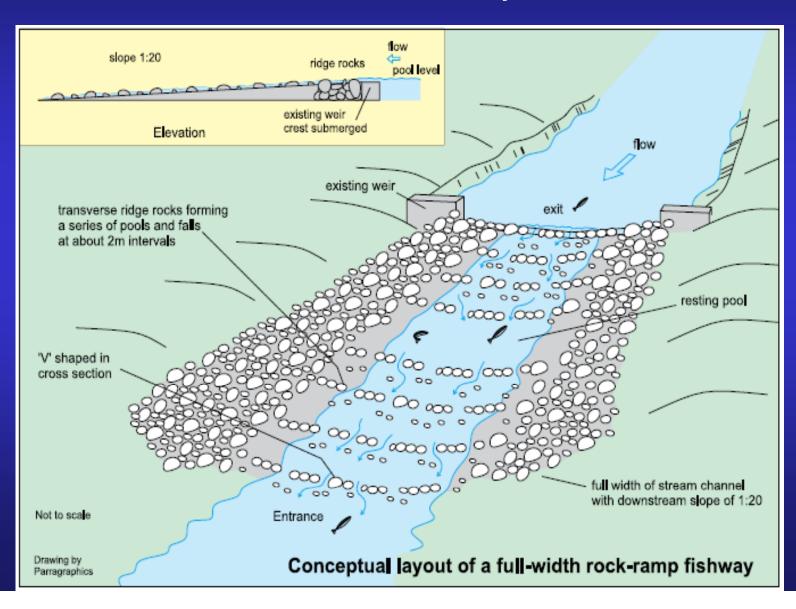
Pool 13	Connected Distance (miles)	Stream Order	Connectivity	
Mill Creek	14.2	4	56.8	
Maquoketa River	41.5	6	249	
Apple River	13.1	5	65.5	
Rush Creek	32.2	4	128.8	
Plum River	39.4	5	197	
Elk River	17.6	4	70.4	
Pool 13 mainstem	55	9	495	
	1262.5			

UMRS Longitudinal Connectivity Index by Pool

Table 12 Longitudinal Connectivity Index for Each Navigation Pool of the UMRS (Pools shaded green have a high LCI, yellow moderate, and red have a low LCI)										
Pool 1 2 3 4 5 5a 6 7 8								9		
LCI	93	2669	845	2209	863	497	529	697	1110	1049
10	11	12	13	14	15	16	17	18	19	20
1978	1393	806	1263	1068	251	536	419	2113	2089	1513
						IIIi	nois Water	way		
21	22	24	25	26	La Grange	Peoria	Starved Rock	Marseilles	Dresden	
1143	2576	1255	923	9982	5438	3997	228	641	284	


Alternatives

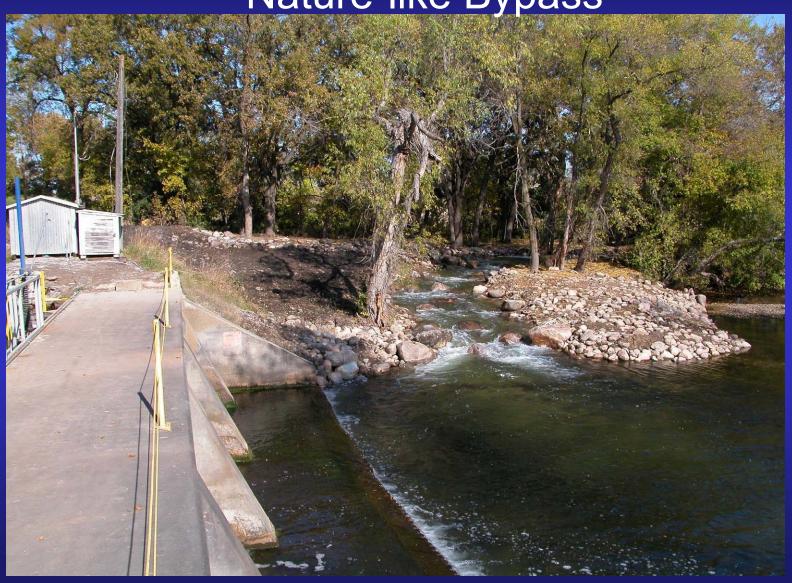
Alternatives

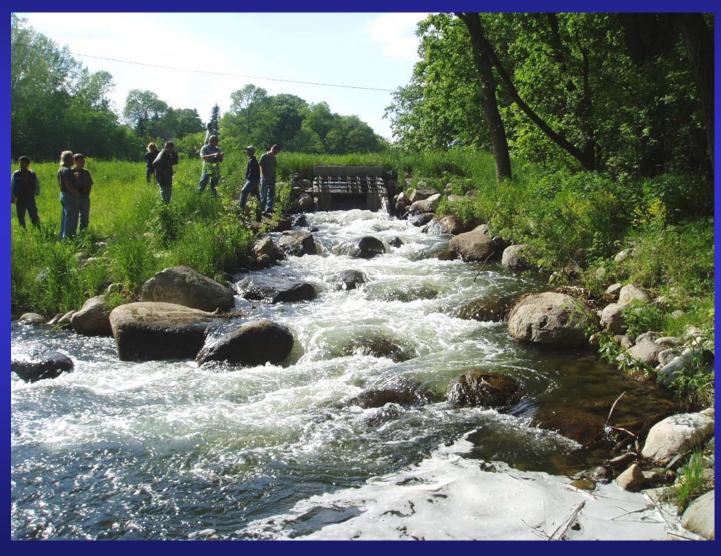

- Dam removal
- Rock ramp
- Nature-like bypass channel
- Technical fishway (Denil, vertical slot, etc.)

Dam Removal

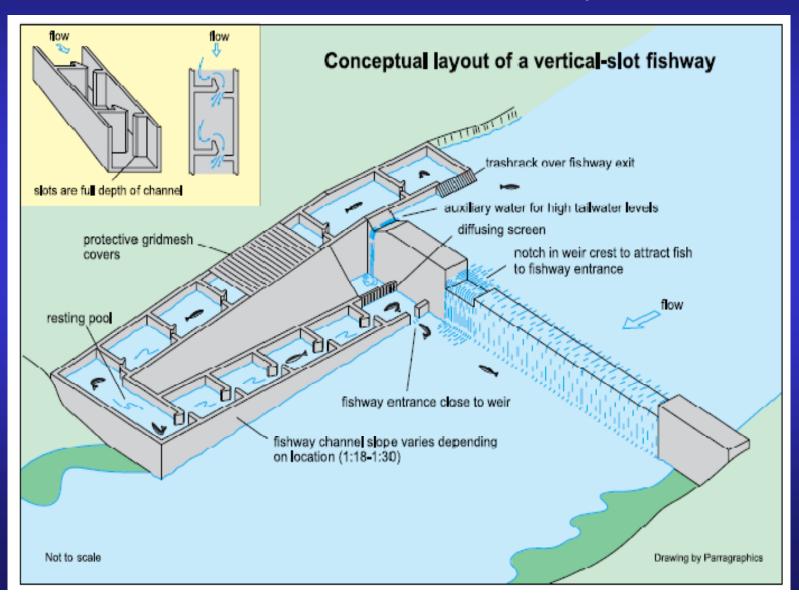
Brewster Creek, Kane County, IL

Rock Ramp

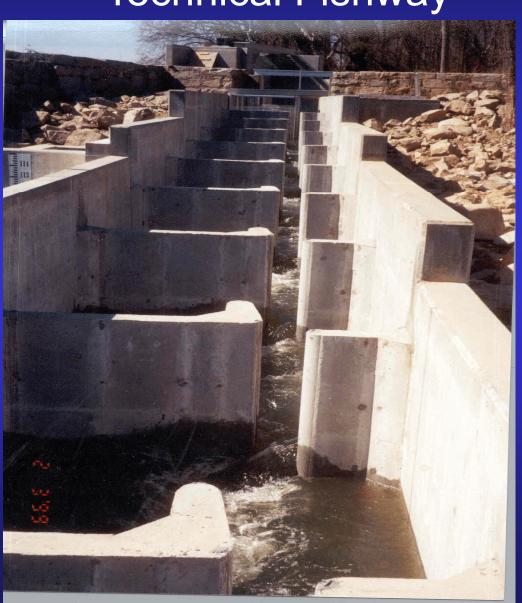

Rock Ramp


Nature-like Bypass

Nature-like Bypass



Nature-like Bypass



Fergus Falls, Red River of the North

Technical Fishway

Technical Fishway

